IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Wigner distributions on von Neumann lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 4787
(http://iopscience.iop.org/0305-4470/32/25/316)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:35

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/25
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2(1999) 4787-4794. Printed in the UK PIl: S0305-4470(99)02954-6

Wigner distributions on von Neumann lattices

J Zak

Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
Received 16 March 1999

Abstract. Given an arbitrary Wigner distribution it is shown that by shifting it in a well-defined
manner on a lattice in the phase plane one obtains a set of Wigner distributions which can be used
for expanding any other Wigner distribution. For some particular class of functions, this set of
Wigner distributions is orthogonal. The notion of such sets of distributions is extended to include
frames on discrete lattices in phase plane.

1. Introduction

The canonical framework of classical mechanics with the coordinaad momentunp
being used together and on the same footing is very attractive, and already in the early stages
of quantum mechanics there have been attempts to use this framework in quantum mechanics,
despite the uncertainty principle. Thus, in the early 1930s Wigner introduced his distribution
which is a function of two continuous variables in thg-phase plane [1]. About the same
time von Neumann had invoked the idea of defining a representation depending on two discrete
variables which form a lattice in thep-plane [2], known as the von Neumann representation.
There is a common feature shared by the Wigner distribution [1] and the von Neumann
representation [2] in that both were first discovered in quantum mechanics and then
independently they were rediscovered in signal processing by Ville [3] and by Gabor [4] in the
tv-plane ¢, time, v, frequency), respectively. We focus here onitpeplane but all the results
can immediately be carried over into theplane. In recent years, the Wigner distribution and
the von Neumann representation have become useful tools in quantum mechanics [5, 6] and in
signal processing [7, 8].
The Wigner distribution is defined directly as a function of the canonicalxypaind p,
and for any given wavefunctiog (x), it has the form

1 1 * 1 1
Wy (x, p) = T eXp(—ﬁpZ>l/f (x - QZ)W(X + EZ) dz. Q)
Onthe other hand, von Neumann defines a representatib(xgbn a pair of discrete variables
(m, n) in the phase planep by using the notion of a lattice

(am + %/\zbn) )

1
a(m,n) =
A2
wherem andn are integersj, a andb constants X anda have the dimension of, andb
the dimension ofp), andab is the area of the unit cell, which in the original von Neumann
lattice wash, Planck’s constant. The von Neumann representation (or Gabor’s representation
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in signal processing) is defined by the expansion coefficigptef ¢ (x) in a set of functions
gmn(x) On the lattice of equation (2)

1ﬁ(x) = Zcmngmn(x)- (3)

Itwas stated by von Neumann [2] and later provenin a number of works [9—11] that the functions
gmn(x) for ab = h form a complete set. The,, coefficients represent the wavefunction

¥ (x) on the discrete lattice and they form the von Neumann representation (or the Gabor
representation in signal processing [12]). Since the Wigner distribution is quadratic in the
wavefunctiony (x) (equation (1)) one should expect it to be related to products o the
coefficients. These relations will, as a rule, contain cross-Wigner distributions which are
defined on different wavefunctions on a lattice in the phase plane [12, 13]. As is well known
[12, 14] for the von Neumann lattiogb = &) the series expansion in equation (3) is poorly
convergent, and that the convergence is improved wiher /. In the latter case the sgt,,

in equation (3) turns into a frame [14, 15]. For finding the expansion coefficigptsoth in

the case of a von Neumann lattieeb = h) and in the case afb < h, it is often convenient

to use theg-representation [12,14—17] which in signal processing is called the Zak transform
[12].

In this paper we show how to construct a set of shifted Wigner distributions on a lattice
in the phase plane which is complete in the sense that any other Wigner distribution can be
expanded in this set in very much the same way as this was originally done for wavefunctions
(see equation (3)). This construction is first carried out for the von Neumann(«ase A
in equation (2)) and then extended to a gg} that forms a frame [14, 15]. In the case
whenab = h, there is a special class of functiogg, for which the Wigner distributions on
a von Neumann lattice are orthogonal. Explicit formulae are established for the expansion
coefficients both for the von Neumann case and for generalizations that form frames.

2. Shifted Wigner distributions

When working on lattices in phase plane it is convenient to use the shift operator [18]

i i i
D(x, p) =expl ——= expl =px Jexpl —=xp 4
(x, p) D( Zhw) p<hPX> p( hxp> 4
wherex andp are the coordinate and momentum operators xaamt p are some values these

operators can assume. By using the definition in equation (4) one can write the discrete set of
functions in phase plang,,(x) on a lattice (equation (3)) in the following way:

&un(x) = D(ma, nb)g(x) = exp(—%abmn) exp(%xnb)g(x —ma) (5)

whereg(x) is an arbitrary function. Fagb = h this is the original von Neumann set, while
for ab < h the set in equation (5) forms a frame [14].

For defining complete sets of Wigner distributions on lattices in phase plane we use the
notion of a cross-Wigner distribution function [13] (also called a transition function [19])
which we define by means of the shift operator (equation (4))

1
Wi p) = — / (1Y1(2))" D(—2x, —2p)ralz) dz ®)

where! is the inversion operator taking(z) into ¥ (—z). The definition in equation (6) is
a generalization of the distributidiy (x, p) in equation (1) for a single functiotr (x). An
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important fact about the cross-Wigner distribution is that when the functlgremd, are
obtained from the same functignby shifts in the phase plane by operators in equation (4), then
the cross-distribution can be expressed by the Wigner distribiitipfior the single function

Y. After some simple calculations one finds

i i i
W (er, poyv, DG, pyw (X, P) = eXp[ﬁP(xl —x2) — ﬁX(m —p2) — Z—(lez - xzpl)}

xWy[x = 301+ x2), p = 3(p1+ p2)]. )
Itis interesting that whem = x, = x andp; = p, = p equation (7) simplifies and we obtain
the known result [13]

Wo. pyw.nG.pw (X, p) = Wy (x — X, p — p). ®)
To us of particular interest is the case on lattices in the phase planemvkema, x, = ma,
p1 = mb, p» = nyb. Equation (7) then becomes

WD (naa,nibyy, Domsa,nabyy (X5 P)
i i i
= exp[ﬁ(ml —mo)pa — ﬁ(nl —ny)xb — E_(mlnz — mznl)ab]

x Wy, [x - %a(ml +my), p — %b(nl +n2)]. (9)

We stress again the fact that the cross-Wigner distribution function for two functions at different
points inthe phase plane is expressed according to equations (7) and (9) by a Wigner distribution
for a single function withx and p, respectively, shifted.

Having a functiony,(x) which can be expanded in the set of functians,(x) of
equation (5),

Y(x) = mz;cmnD(ma, nb)g(x) = mz; Cimn exp(—li_abmn) exp(%xnb)g(x —ma) (10)

we ask the question about the expansion of the Wigner distribitip(x, p) in a series of

the elementary cross-Wigner distributioWs ;n,a,n.p)w, Dmea,nsbyy (X, p) ON & lattice in phase
plane. For this purpose we need to know another formula connecting the Wigner distribution
for a linear combinatiom;y1 + c2¥2, We,y,+e,y, (X, p) With the cross-Wigner distributions

2

Weryprteay, (X, p) = Z cie; Wy, ;- (11)
ij=1

With the formulae in equations (9)—(11) at hand one easily finds the following expansion:
sz (x7 P) = Z C;ncm’n/ Wg,,,,,,gmr,,r (x, P)

mn
m'n’

i i i
= Z ChnCmin exp[ﬁ(m —m')pa — ﬁ(n —n)xb — E_(mn’ - m'n)ab:|

x We[x — %a(m +m'), p — %b(n +n")]. (12)

This formula shows that given the Wigner distributi@fy(x, p) for the functiong(x) one can
expand any other Wigner distributid#iy (x, p) in the set of shifted distributions

W, (x — %ak, p— %bﬂ) (13)

with & and ¢ assuming all integer values. Clearly, for this one has to know the expansion
coefficients which, in principle, can be determined from the expansion in equation (10), but



4790 J Zak

as is shown below they can also be found directly from the Wigner distributignand w,.

The expansions in equations (10) and (12) for the wavefunatior) and for the Wigner
distribution Wy, (x, p) are of the same nature. In the case/gk) one starts with the function

g(x) (called the test function) and by shifting it on a discrete lattice in the phase plane one
arrives at to a set of functions that can be used for expanding (equation (10)). The result

of equation (12) is similar: one starts with the Wigner distributiép(x, p) (which can be
called the test Wigner distribution) and one builds a set of shifted Wigner distributions in the
phase plane (equation (13)) which can be used for expanding any arbitrary Wigner distribution
Wy (x, p) according to equation (12). It is interesting to point out, however, that when the
area of the unit cell for the lattice in the phase plane in the expansigiixof (equation (10))

is ab, the unit cell area for the expansion wf, (x, p) is %ab (equations (12) and (13)). The
appearance oféunit cell seems to be characteristic for Wigner distributions on lattices in the
phase plane [12, 20].

3. Expansion coefficients

For finding the expansion coefficients of the expansions in equation (10) or (12) (the latter
are products of the former), we consider first in detail the von Neumann e¢hse,  (see
equation (2)), and the results will then be generalized to frames [14, 15§With 2/ N where

N is an integee= 2. When working on lattices it is convenient to use tgetransform [16]

d \ M2
CV (k. q) = (E) > explikdn)y(q — nd)

d 12 pmjd y
wm:(E) / Cy (k. x) dk

w/d

(14)

whered is an arbitrary constant. In the von Neumann dase /a (see equation (12)), and
the set in equation (5) then becomes intgerepresentation (we pdt = a)

2
CO(k, q) = (—1)™ exp(—ikam + i—”qn> C(k, q). (15)
a
It is also useful to define the tilde set [12, 16, 21]:
~ 2
CO(k,q) = (=)™ exp(—ikam + i—”qn) C (k. q) (16)
a (
with
Cik,q) = ! 17)
SOV oncr )

Thetilde setcanin some sense be called biorthogonal to the original von Neum@pn(&et;)
in that they satisfy the following biorthogonality relation:

f é;kn" (k; @) Cow (kq) dk dg = Sy Sy (18)

One should, however, have in mind tl@i(k, ¢) is, in general, not square integrable [12, 21].
In the x-representation the tilde functigr(x) is (see equation (14))

a \ 12
gx) = (Z) /Cg(k,X) dk. (19)
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As is well known, the expansion coefficients, in equation (10) for the von Neumann
case(ab = h) can be expressed in tihg-representation in the following way [12, 17, 21]:

1 ~
Cnn = 5= / / C\(k, 9)C (k, q) dk dg (20)
JT

where éf,;’,f(k, q) is given in equation (16) and the integration is over a unit cell in the
von Neumann lattice: from O tos2/a for k and from O toa for ¢. In the expansion of

the Wigner distribution in equation (12) the expansion coefficients are prodj)ets, and

in what follows we show how to express them directly by integrals on Wigner functions. For

this we use Moyal's formula [13, 21]

1
f Wi o P Wys g (6, p) e dp = 5 (U3, Y2) (V. V). (21)

From here the very handy orthogonality relation follows for the Wigner distribution functions
(we use the orthogonality @,,, andg,.» in equation (18)):

/ Whmanbyz, pmannyzXs PYWDka,thyg, Diwa,ebyg (X, p) Ax dp = 8kdneSmriSprer- (22)

The expansion coefficients in equation (12) &ér= h are then obtained by multiplying the
latter on both sides bW}, 1)z pa.enz (% P) @nd by integrating over andp. We have

e = Znﬁ/ W;)(ka,lb)g',D(k’a,E/b)g(XP)W(X7 p)dxdp (23)

where we used the orthogonality relation in equation (22).

In general, the functions in the von Neumann set in equation (5) atith- # are non-
orthogonal, and they satisfy a biorthogonality relation in the form of equation (18). However,
there is a very wide class of square-integrable functi©(s ¢) for which the von Neumann
set is orthogonal. These are functions whe'sg, ¢)’s satisfy the condition [11, 22, 23]

|C(k, q)| = constant (24)

For this class of functions whefi(k, ¢) is chosen to be of norm 1, the tilde function equals
thekg-function itself (equation (17))

C(k,q) = C(k, q) (25)

and it then follows that the orthogonality relations in equations (18) and (22) hold for the
functions themselves (the tildes can be erased). Correspondingly, the expansion coefficients
in equations (20) and (23) will also have no tilde functions.

Finally, let us remark on the extension of the above results to frames. As was mentioned
above the case of the von Neumann lattice with= % leads to poorly convergent series
[12,14,21]. The convergence is improved considerably for ggtéx) (equation (5)) that
form frames, and in what follows we discuss the case when [14]

ab = — N=23.... (26)
N

For this purpose we choose an arbitrary constaartd two integerd, andM with their product
LM = N. We then write

a== and b=h— (27)
L Md
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which ensures thath = /N as in equation (26). By using this notation we define the frame
operator [15] in th&g-representation

d
F _ g (k- 2 o4
k,q) = 27'(2;2 (k sq Lt
K =1
This operator is periodic under all the translatioRgma, nb) in equation (5), and the

von Neumann set (equation (15)) can be generalized to

8§Dk, q)
FY2(k, q)

2
(28)

o\ (k, q) = (29)

whereg@ (k, q) is thekq transform of the set of functions in equation (5), and the relations

mn

betweena, b andd are given in equation (27). The advantage of using the new functions
¢ (k, q) is that for them a convenient decomposition of the unit operawdists [14, 15],

D lgi g = 1. (30)

m,n

An immediate consequence of this decomposition is the expansion of any fuaction) in
the selp,.. (k, q)

Clk, q) = Zc<f>¢><””<k 9) (31)
where the expansion coefficients agegtands for frame)

) = f 929k, )C (k. ) dk d. (32)

Correspondingly, the expansion of any Wigner distribution will hold as given by equation (12)
but with¢,,,, replaced b)c,(n’;) and withg replaced byp (equation (29)). The direct calculation

of the expansion coefficients in equation (23) will also hold but itteplaced byp, as is
easily seen by using equation (32) and Moyal’s formula (21).

4. Example and conclusions

As an elementary example of constructing a complete set of Wigner distributions
(equation (13)), let us consider the ground stagér) of the harmonic oscillator

1 \Y2 x2
Yo(x) = (m) EXP<—ﬁ> (33)

wherel is a constant. By using the definition in equation (1), the Wigner fundiifgtx, p)
for this ground state is

1 X2 A2p2
W N = —exX —_—— — — . 34
otx, ) = exp( 3~ ) (34)
We restrict ourselves to the case of a von Neumann latiige< 1), and then the complete set
of Wigner distributions according to equation (13) becomes

a T 1 (x = (¢/Dk)*  A(p — (w/a)ht)?
Wolx — <k, p— —ht ) = —exp — -
O(x A > h Xp[ »2 2
wherek and¢ equal Q+1, +2, .... From what we have proven above the system of Wigner
functions in equation (35) is complete in the sense that any Wigner funifijox, p) can

(39)
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be expanded in it according to equation (12) (we use the condition for a von Neumann lattice
ab = h):

mn'—m'n _x i / : ’ 2r
Wy (x, p) = Z(—l) c o exp[ﬁ(m —mpa—i(n—n )x71|

m,n
m'n’

><W0|:x—%(m+m’), p—ﬂ(n +n/)i| (36)
a

where Wj is given in equation (35). To find the expansion coefficients we can use the
expression in equation (20), and for this we need the tilde set of equation (16) for the ground
state of a harmonic oscillator. Tke-functionCy(k, ¢) for ¥o(x) in equation (33) is according

to equation (14)

a 1/2 qz
C(()a)(k,CI) = (m) eXp(—ﬁ>93(zl0) (37)

where#ds is the well known theta function

03(zlo) = Z exp(2izn + imon?) (38)
and
ka . qa a?

=— —j =i—. 39

2 22 7T 2 (39)
With this in mind we obtain the following expression for the tilde set of equation (16) for the
ground state of a harmonic oscillator:

2 ~
COk,q) = (—1)™ exp(—ikam + i—”qn> C(k, q) (40)
a
where according to equation (1@};‘)(1@ q)is

C k. q) = (41)

We now have all the information needed for calculating the expansion coefficignfer
the example in equation (36). For this we use the formula given by equation (20) with the
kg-functionC (k, q) for the wavefunction) (x) which is obtained according to equation (14).

In conclusion, the main result of this paper is that any Wigner distribufigiix, p) for
an arbitrary state(x) can be expanded in a set of elementary Wigner distributions that are
obtained by starting with a fixed Wigner distributid¥, (x, p) for an appropriately chosen
functiong(x), and by shifting it on a lattice in the phase plane according to equation (12). In
view of the fact thaW, (x, p) is in our disposition, it is to be expected that the expansion (12)
will find applications both in physics and in signal processing.

We have considered in detail the Wigner distribution but there are many other distributions
of positionx and momentunp available which were studied in detail in the literature [24] and
in a recent basic book [25]. A convenient list of relations between the different distributions is
summarized in a recent publication [26]. Our expansion technique on von Neumann lattices
can without much difficulty be extended to the variety of other distributions in the phase plane.
An important physical situation which brings about a von Neumann lattice in a natural way
is the problem of an electron in a constant magnetic field. The relevant phase plane in this
problem is related to the plane of orbital centres for the motion perpendicular to the magnetic
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field. In recent publications [23, 27] the von Neumann lattice was used to construct a complete
set of orthonormal states for each Landau level. One should expect that the expansion scheme
of Wigner distributions (or any other phase plane distributions) on von Neumann lattices will
be well applicable to the magnetic field problem when combined with the complete set of
orthonormal states for Landau Levels. It should be pointed out that in signal processing there
are other works that have previously considered the relations between the von Neumann (in
signal processing it is Gabor) and Wigner representations [21, 28].
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