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Received 16 March 1999

Abstract. Given an arbitrary Wigner distribution it is shown that by shifting it in a well-defined
manner on a lattice in the phase plane one obtains a set of Wigner distributions which can be used
for expanding any other Wigner distribution. For some particular class of functions, this set of
Wigner distributions is orthogonal. The notion of such sets of distributions is extended to include
frames on discrete lattices in phase plane.

1. Introduction

The canonical framework of classical mechanics with the coordinatex and momentump
being used together and on the same footing is very attractive, and already in the early stages
of quantum mechanics there have been attempts to use this framework in quantum mechanics,
despite the uncertainty principle. Thus, in the early 1930s Wigner introduced his distribution
which is a function of two continuous variables in thexp-phase plane [1]. About the same
time von Neumann had invoked the idea of defining a representation depending on two discrete
variables which form a lattice in thexp-plane [2], known as the von Neumann representation.

There is a common feature shared by the Wigner distribution [1] and the von Neumann
representation [2] in that both were first discovered in quantum mechanics and then
independently they were rediscovered in signal processing by Ville [3] and by Gabor [4] in the
tν-plane (t , time,ν, frequency), respectively. We focus here on thexp-plane but all the results
can immediately be carried over into thetν-plane. In recent years, the Wigner distribution and
the von Neumann representation have become useful tools in quantum mechanics [5, 6] and in
signal processing [7, 8].

The Wigner distribution is defined directly as a function of the canonical pairx andp,
and for any given wavefunctionψ(x), it has the form

Wψ(x, p) = 1

2πh̄

∫
exp

(
−1

h̄
pz

)
ψ∗
(
x − 1

2z
)
ψ
(
x + 1

2z
)

dz. (1)

On the other hand, von Neumann defines a representation ofψ(x) on a pair of discrete variables
(m, n) in the phase planexp by using the notion of a lattice

α(m, n) = 1

λ
√

2

(
am +

1

h̄
λ2bn

)
(2)

wherem andn are integers,λ, a andb constants (λ anda have the dimension ofx, andb
the dimension ofp), andab is the area of the unit cell, which in the original von Neumann
lattice wash, Planck’s constant. The von Neumann representation (or Gabor’s representation

0305-4470/99/254787+08$19.50 © 1999 IOP Publishing Ltd 4787



4788 J Zak

in signal processing) is defined by the expansion coefficientscmn of ψ(x) in a set of functions
gmn(x) on the lattice of equation (2)

ψ(x) =
∑
m,n

cmngmn(x). (3)

It was stated by von Neumann [2] and later proven in a number of works [9–11] that the functions
gmn(x) for ab = h form a complete set. Thecmn coefficients represent the wavefunction
ψ(x) on the discrete lattice and they form the von Neumann representation (or the Gabor
representation in signal processing [12]). Since the Wigner distribution is quadratic in the
wavefunctionψ(x) (equation (1)) one should expect it to be related to products of thecmn
coefficients. These relations will, as a rule, contain cross-Wigner distributions which are
defined on different wavefunctions on a lattice in the phase plane [12, 13]. As is well known
[12, 14] for the von Neumann lattice(ab = h) the series expansion in equation (3) is poorly
convergent, and that the convergence is improved whenab < h. In the latter case the setgmn
in equation (3) turns into a frame [14, 15]. For finding the expansion coefficientscmn both in
the case of a von Neumann lattice(ab = h) and in the case ofab < h, it is often convenient
to use thekq-representation [12,14–17] which in signal processing is called the Zak transform
[12].

In this paper we show how to construct a set of shifted Wigner distributions on a lattice
in the phase plane which is complete in the sense that any other Wigner distribution can be
expanded in this set in very much the same way as this was originally done for wavefunctions
(see equation (3)). This construction is first carried out for the von Neumann case(ab = h
in equation (2)) and then extended to a setgmn that forms a frame [14, 15]. In the case
whenab = h, there is a special class of functionsgmn for which the Wigner distributions on
a von Neumann lattice are orthogonal. Explicit formulae are established for the expansion
coefficients both for the von Neumann case and for generalizations that form frames.

2. Shifted Wigner distributions

When working on lattices in phase plane it is convenient to use the shift operator [18]

D(x, p) = exp

(
− i

2h̄
xp

)
exp

(
i

h̄
px̂

)
exp

(
− i

h̄
xp̂

)
(4)

wherex̂ andp̂ are the coordinate and momentum operators, andx andp are some values these
operators can assume. By using the definition in equation (4) one can write the discrete set of
functions in phase planegmn(x) on a lattice (equation (3)) in the following way:

gmn(x) = D(ma, nb)g(x) = exp

(
− i

2h̄
abmn

)
exp

(
i

h̄
xnb

)
g(x −ma) (5)

whereg(x) is an arbitrary function. Forab = h this is the original von Neumann set, while
for ab < h the set in equation (5) forms a frame [14].

For defining complete sets of Wigner distributions on lattices in phase plane we use the
notion of a cross-Wigner distribution function [13] (also called a transition function [19])
which we define by means of the shift operator (equation (4))

Wψ1,ψ2(x, p) =
1

πh̄

∫
(Iψ1(z))

∗D(−2x,−2p)ψ2(z) dz (6)

whereI is the inversion operator takingψ(z) into ψ(−z). The definition in equation (6) is
a generalization of the distributionWψ(x, p) in equation (1) for a single functionψ(x). An
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important fact about the cross-Wigner distribution is that when the functionsψ1 andψ2 are
obtained from the same functionψ by shifts in the phase plane by operators in equation (4), then
the cross-distribution can be expressed by the Wigner distributionWψ for the single function
ψ . After some simple calculations one finds

WD(x1,p1)ψ,D(x2,p2)ψ (x, p) = exp

[
i

h̄
p(x1− x2)− i

h̄
x(p1− p2)− i

2h̄
(x1p2 − x2p1)

]
×Wψ

[
x − 1

2(x1 + x2), p − 1
2(p1 + p2)

]
. (7)

It is interesting that whenx1 = x2 = x̄ andp1 = p2 = p̄ equation (7) simplifies and we obtain
the known result [13]

WD(x̄,p̄)ψ,D(x̄,p̄)ψ (x, p) = Wψ(x − x̄, p − p̄). (8)

To us of particular interest is the case on lattices in the phase plane whenx1 = m1a, x2 = m2a,
p1 = n1b, p2 = n2b. Equation (7) then becomes

WD(m1a,n1b)ψ,D(m2a,n2b)ψ(x, p)

= exp

[
i

h̄
(m1−m2)pa − i

h̄
(n1− n2)xb − i

2h̄
(m1n2 −m2n1)ab

]
×Wψ

[
x − 1

2a(m1 +m2), p − 1
2b(n1 + n2)

]
. (9)

We stress again the fact that the cross-Wigner distribution function for two functions at different
points in the phase plane is expressed according to equations (7) and (9) by a Wigner distribution
for a single function withx andp, respectively, shifted.

Having a functionψ(x) which can be expanded in the set of functionsgmn(x) of
equation (5),

ψ(x) =
∑
m,n

cmnD(ma, nb)g(x) =
∑
m,n

cmn exp

(
− i

2h̄
abmn

)
exp

(
i

h̄
xnb

)
g(x −ma) (10)

we ask the question about the expansion of the Wigner distributionWψ(x, p) in a series of
the elementary cross-Wigner distributionsWD(m1a,n1b)ψ,D(m2a,n2b)ψ(x, p) on a lattice in phase
plane. For this purpose we need to know another formula connecting the Wigner distribution
for a linear combinationc1ψ1 + c2ψ2,Wc1ψ1+c2ψ2(x, p) with the cross-Wigner distributions

Wc1ψ1+c2ψ2(x, p) =
2∑

i,j=1

c∗i cjWψi,ψj . (11)

With the formulae in equations (9)–(11) at hand one easily finds the following expansion:

Wψ(x, p) =
∑
mn
m′n′

c∗mncm′n′Wgmn,gm′n′ (x, p)

=
∑
mn
m′n′

c∗mncm′n′ exp

[
i

h̄
(m−m′)pa − i

h̄
(n− n′)xb − i

2h̄
(mn′ −m′n)ab

]
×Wg

[
x − 1

2a(m +m′), p − 1
2b(n + n′)

]
. (12)

This formula shows that given the Wigner distributionWg(x, p) for the functiong(x) one can
expand any other Wigner distributionWψ(x, p) in the set of shifted distributions

Wg

(
x − 1

2ak, p − 1
2b`

)
(13)

with k and` assuming all integer values. Clearly, for this one has to know the expansion
coefficients which, in principle, can be determined from the expansion in equation (10), but
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as is shown below they can also be found directly from the Wigner distributionsWψ andWg.
The expansions in equations (10) and (12) for the wavefunctionψ(x) and for the Wigner
distributionWψ(x, p) are of the same nature. In the case ofψ(x) one starts with the function
g(x) (called the test function) and by shifting it on a discrete lattice in the phase plane one
arrives at to a set of functions that can be used for expandingψ(x) (equation (10)). The result
of equation (12) is similar: one starts with the Wigner distributionWg(x, p) (which can be
called the test Wigner distribution) and one builds a set of shifted Wigner distributions in the
phase plane (equation (13)) which can be used for expanding any arbitrary Wigner distribution
Wψ(x, p) according to equation (12). It is interesting to point out, however, that when the
area of the unit cell for the lattice in the phase plane in the expansion ofψ(x) (equation (10))
is ab, the unit cell area for the expansion ofWψ(x, p) is 1

4ab (equations (12) and (13)). The
appearance of a14 unit cell seems to be characteristic for Wigner distributions on lattices in the
phase plane [12, 20].

3. Expansion coefficients

For finding the expansion coefficients of the expansions in equation (10) or (12) (the latter
are products of the former), we consider first in detail the von Neumann case,ab = h (see
equation (2)), and the results will then be generalized to frames [14, 15] withab = h/N where
N is an integer> 2. When working on lattices it is convenient to use thekq transform [16]

C
(d)
ψ (k, q) =

(
d

2π

)1/2∑
n

exp(ikdn)ψ(q − nd)

ψ(x) =
(
d

2π

)1/2 ∫ π/d

−π/d
C
(d)
ψ (k, x)dk

(14)

whered is an arbitrary constant. In the von Neumann caseb = h/a (see equation (12)), and
the set in equation (5) then becomes in thekq-representation (we putd = a)

C(a)mn(k, q) = (−1)mn exp

(
−ikam + i

2π

a
qn

)
C(a)g (k, q). (15)

It is also useful to define the tilde set [12, 16, 21]:

C̃(a)mn(k, q) = (−1)mn exp

(
−ikam + i

2π

a
qn

)
C
(a)

g̃
(k, q) (16)

with

Cg̃(k, q) = 1

2πC∗g (k, q)
. (17)

The tilde set can in some sense be called biorthogonal to the original von Neumann setCmn(k, q)

in that they satisfy the following biorthogonality relation:∫
C̃∗mn(k, q)Cm′n′(kq) dk dq = δmm′δnn′ . (18)

One should, however, have in mind thatCg̃(k, q) is, in general, not square integrable [12, 21].
In thex-representation the tilde functioñg(x) is (see equation (14))

g̃(x) =
(
a

2π

)1/2 ∫
Cg̃(k, x)dk. (19)
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As is well known, the expansion coefficientscmn in equation (10) for the von Neumann
case(ab = h) can be expressed in thekq-representation in the following way [12, 17, 21]:

cmn = 1

2π

∫ ∫
C̃(a)mn(k, q)C(k, q)dk dq (20)

where C̃(a)mn(k, q) is given in equation (16) and the integration is over a unit cell in the
von Neumann lattice: from 0 to 2π/a for k and from 0 toa for q. In the expansion of
the Wigner distribution in equation (12) the expansion coefficients are productsc∗mncm′n′ and
in what follows we show how to express them directly by integrals on Wigner functions. For
this we use Moyal’s formula [13, 21]∫

W ∗ψ1,ψ2
(x, p)Wψ3,ψ4(x, p)dx dp = 1

2πh̄
(ψ3, ψ1)(ψ2, ψ4). (21)

From here the very handy orthogonality relation follows for the Wigner distribution functions
(we use the orthogonality of̃gmn andgm′n′ in equation (18)):∫
W ∗D(ma,nb)g̃,D(m′a,n′b)g̃(x, p)WD(ka,`b)g,D(k′a,`′b)g(x, p)dx dp = δmkδn`δm′k′δn′`′ . (22)

The expansion coefficients in equation (12) forab = h are then obtained by multiplying the
latter on both sides byW ∗

D(ka,`b)g̃,D(k′a,`′b)g̃(x, p) and by integrating overx andp. We have

c∗k`ck′`′ = 2πh̄
∫ ∫

W ∗D(ka,`b)g̃,D(k′a,`′b)g̃(xp)W(x, p)dx dp (23)

where we used the orthogonality relation in equation (22).
In general, the functions in the von Neumann set in equation (5) withab = h are non-

orthogonal, and they satisfy a biorthogonality relation in the form of equation (18). However,
there is a very wide class of square-integrable functionsC(k, q) for which the von Neumann
set is orthogonal. These are functions whoseC(k, q)’s satisfy the condition [11, 22, 23]

|C(k, q)| = constant. (24)

For this class of functions whenC(k, q) is chosen to be of norm 1, the tilde function equals
thekq-function itself (equation (17))

C̃(k, q) = C(k, q) (25)

and it then follows that the orthogonality relations in equations (18) and (22) hold for the
functions themselves (the tildes can be erased). Correspondingly, the expansion coefficients
in equations (20) and (23) will also have no tilde functions.

Finally, let us remark on the extension of the above results to frames. As was mentioned
above the case of the von Neumann lattice withab = h leads to poorly convergent series
[12, 14, 21]. The convergence is improved considerably for setsgmn(x) (equation (5)) that
form frames, and in what follows we discuss the case when [14]

ab = h

N
N = 2, 3, . . . . (26)

For this purpose we choose an arbitrary constantd and two integersL andM with their product
LM = N . We then write

a = d

L
and b = h̄ 2π

Md
(27)
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which ensures thatab = h/N as in equation (26). By using this notation we define the frame
operator [15] in thekq-representation

F(k, q) = 2π
M∑
s=1

L∑
t=1

∣∣∣∣g(d)(k − 2π

Md
s, q − d

L
t

)∣∣∣∣2. (28)

This operator is periodic under all the translationsD(ma, nb) in equation (5), and the
von Neumann set (equation (15)) can be generalized to

φ(d)mn(k, q) =
g(d)mn(k, q)

F 1/2(k, q)
(29)

whereg(d)mn(k, q) is thekq transform of the set of functions in equation (5), and the relations
betweena, b andd are given in equation (27). The advantage of using the new functions
φ(d)mn(k, q) is that for them a convenient decomposition of the unit operatorI exists [14, 15],∑

m,n

|φ(d)mn〉〈φ(d)mn | = I. (30)

An immediate consequence of this decomposition is the expansion of any functionC(k, q) in
the setφmn(k, q)

C(k, q) =
∑
m,n

c(f )mn φ
(d)
mn(k, q) (31)

where the expansion coefficients are (f stands for frame)

c(f )mn =
∫
φ∗ (d)mn (k, q)C(k, q)dk dq. (32)

Correspondingly, the expansion of any Wigner distribution will hold as given by equation (12)
but withcmn replaced byc(f )mn and withg replaced byφ (equation (29)). The direct calculation
of the expansion coefficients in equation (23) will also hold but withg̃ replaced byφ, as is
easily seen by using equation (32) and Moyal’s formula (21).

4. Example and conclusions

As an elementary example of constructing a complete set of Wigner distributions
(equation (13)), let us consider the ground stateψ0(x) of the harmonic oscillator

ψ0(x) =
(

1

λ
√
π

)1/2

exp

(
− x

2

2λ2

)
(33)

whereλ is a constant. By using the definition in equation (1), the Wigner functionW0(x, p)

for this ground state is

W0(x, p) = 1

πh̄
exp

(
−x

2

λ2
− λ

2p2

h̄2

)
. (34)

We restrict ourselves to the case of a von Neumann lattice (ab = h), and then the complete set
of Wigner distributions according to equation (13) becomes

W0

(
x − a

2
k, p − π

a
h̄`

)
= 1

πh̄
exp

[
− (x − (q/2)k)

2

λ2
− λ

2(p − (π/a)h̄`)2
h̄2

]
(35)

wherek and` equal 0,±1,±2, . . . . From what we have proven above the system of Wigner
functions in equation (35) is complete in the sense that any Wigner functionWψ(x, p) can
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be expanded in it according to equation (12) (we use the condition for a von Neumann lattice
ab = h):

Wψ(x, p) =
∑
m,n
m′n′

(−1)mn
′−m′nc∗mncm′n′ exp

[
i

h̄
(m−m′)pa − i(n− n′)x 2π

a

]

×W0

[
x − a

2
(m +m′), p − πh̄

a
(n + n′)

]
(36)

whereW0 is given in equation (35). To find the expansion coefficientscmn we can use the
expression in equation (20), and for this we need the tilde set of equation (16) for the ground
state of a harmonic oscillator. Thekq-functionC0(k, q) forψ0(x) in equation (33) is according
to equation (14)

C
(a)
0 (k, q) =

(
a

2λπ3/2

)1/2

exp

(
− q

2

2λ2

)
θ3(z|σ) (37)

whereθ3 is the well known theta function

θ3(z|σ) =
∞∑

n=−∞
exp(2izn + iπσ 2n2) (38)

and

z = ka

2
− i

qa

2λ2
σ = i

a2

2πλ2
. (39)

With this in mind we obtain the following expression for the tilde set of equation (16) for the
ground state of a harmonic oscillator:

C(a)mn(k, q) = (−1)mn exp

(
−ikam + i

2π

a
qn

)
C̃
(a)
0 (k, q) (40)

where according to equation (17)C̃(a)0 (k, q) is

C̃
(a)
0 (k, q) = 1

2πC∗0(k, q)
. (41)

We now have all the information needed for calculating the expansion coefficientscmn for
the example in equation (36). For this we use the formula given by equation (20) with the
kq-functionC(k, q) for the wavefunctionψ(x) which is obtained according to equation (14).

In conclusion, the main result of this paper is that any Wigner distributionWψ(x, p) for
an arbitrary stateψ(x) can be expanded in a set of elementary Wigner distributions that are
obtained by starting with a fixed Wigner distributionWg(x, p) for an appropriately chosen
functiong(x), and by shifting it on a lattice in the phase plane according to equation (12). In
view of the fact thatWg(x, p) is in our disposition, it is to be expected that the expansion (12)
will find applications both in physics and in signal processing.

We have considered in detail the Wigner distribution but there are many other distributions
of positionx and momentump available which were studied in detail in the literature [24] and
in a recent basic book [25]. A convenient list of relations between the different distributions is
summarized in a recent publication [26]. Our expansion technique on von Neumann lattices
can without much difficulty be extended to the variety of other distributions in the phase plane.
An important physical situation which brings about a von Neumann lattice in a natural way
is the problem of an electron in a constant magnetic field. The relevant phase plane in this
problem is related to the plane of orbital centres for the motion perpendicular to the magnetic



4794 J Zak

field. In recent publications [23, 27] the von Neumann lattice was used to construct a complete
set of orthonormal states for each Landau level. One should expect that the expansion scheme
of Wigner distributions (or any other phase plane distributions) on von Neumann lattices will
be well applicable to the magnetic field problem when combined with the complete set of
orthonormal states for Landau Levels. It should be pointed out that in signal processing there
are other works that have previously considered the relations between the von Neumann (in
signal processing it is Gabor) and Wigner representations [21, 28].

Acknowledgment

The author would like to thank Professor Ady Mann for valuable remarks.

References

[1] Wigner E P 1932Phys. Rev.40749
[2] Von Neumann J 1955Mathematical Foundations of Quantum Mechanics(Princeton, NJ: Princeton University

Press) ch V, sec 4
[3] Ville J 1948Cables TransmissionA 1 61
[4] Gabor D 1946J. Inst. Electron. Eng.93429
[5] Hillery M, O’Connell R F, Scully M O and Wigner E P 1984Phys. Rep.106121

Lee H W 1995Phys. Rep.259147
[6] Dana I and Zak J 1985Phys. Rev.B 323612
[7] Zibulski M and Zeevi Y Y 1997 IEEE Trans. Signal Process.451428
[8] Qian S and Chen D 1996Joint Time–Frequency Analysis(Englewood Cliffs, NJ: Prentice Hall)
[9] Perelmov A M 1971Theor. Math. Phys.6 156

[10] Bargmann V, Butera P, Girardello L and Klauder J 1971Rep. Math. Phys.2 221
[11] Bacry H, Grossmann A and Zak J 1975Phys. Rev.B 121118
[12] Janssen A J E M1988Philips J. Res.4323
[13] Claasen T A C M andMecklenbrauker W F G 1980Philips J. Res.35217
[14] Daubechies I, Grossmann A and Meyer Y 1986J. Math. Phys.271271
[15] Zak J 1996J. Math. Phys.373815
[16] Zak J 1967Phys. Rev. Lett.191385

Zak J 1972Solid State Physicsvol 27, ed F Seitz and D Turnbull (New York: Academic)
[17] Bastiaans M J 1980Proc. IEEE68538
[18] Glauber R J 1963Phys. Rev.1312766
[19] Dahl J P 1982Phys. Scr.25499
[20] Zak J 1992Phys. Rev.A 453540
[21] Janssen A J E M1984IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP ’84)3 41 B.2.1
[22] Balian R 1981C. R. Acad. Sci., Paris2921357
[23] Zak J 1997Phys. Rev. Lett.79533
[24] Cohen L 1966J. Math. Phys.7 781
[25] Cohen L 1995Time–Frequency Analysis(London: Prentice Hall)
[26] Sala R, Palao J P and Muga J G 1997Phys. Lett.A 231304
[27] Rashba E I, Zh́ukov L E and Efros A L 1997Phys. Rev.B 555306
[28] Qian S and Morris J 1992Signal Process.27125


